
CSL-3090 ARTIFICIAL INTELLIGENCE
PROJECT REPORT

SOUMIK ROY (B20AI042)
STUTI ASWANI (B20AI065)

YASH BHARGAVA (B20AI050)

Github Repo | Demo

Abstract

Emanuel Laskar once said, “When you see a good move, look for a better one.” Well,
what if there was an AI that could do that for you? Presenting Stalemate, our
attempt to build a robust AI that can pit 2 chess pieces against each other and use
classic heuristics to determine who will win.

The game comes with 4 player options:
1. Human Player
2. AI with Minimax
3. AI with Alpha-Beta Pruning
4. Random Player

There are also 4 types of heuristics involved:
1.. Open Move Score (OMS)
2. Improved OMS
3. Weighted OMS
4. Farsighted Score

Problem Statement
The goal of this project is to build an AI that can feasibly and optimally play a game
of stalemate between 2 chess pieces that can be any of the following: Knight, Bishop,
Queen and Rook.

https://github.com/Soumik-Roy/StaleMate
https://drive.google.com/file/d/1s4whgw_BSRb7UeeBHP8c-kvNPnWU1Tgl/view?usp=share_link


Background Of The Game

The 2-player game begins with both players deciding which piece they will be using.
When using AI, at every point, the best possible move will be chosen as the next
move.

The players can be one of 4 types:
1. An AI that uses a minimax algorithm to determine its next move.
2. An AI that uses the alpha-beta pruning algorithm to determine its next move.
3. A Human Player (user inputs the position they want to move to)
4. A player that randomly selects a move from available legal moves.

The game will then end when there are no possible moves left for a player to play (no
valid moves), or a player is unable to make a move in the given time(forfeit). In either
case, the player unable to make a move will lose.

Motivation

One of the most famous questions in classical chess is which one of the Bishop and
the Knight is more powerful. As humans through the decades have pondered on and
debated this problem, we decided to come up with a game that puts these 2 pieces
of chess against each other. We then built an AI agent that could use modified
versions of the Heuristics and Pruning techniques taught to us in the course
CSL3090 - Artificial Intelligence, that can play the game by itself, making the best
possible decisions and trying to win the game.

This would also enable us to gain insight into these techniques and give us a greater
understanding of them, as we translate our penned class notes into a functioning
code.

Not only do we now have an answer to the question, but our enthusiasm also led us
to expand the set of pieces to include the Queen and the Rook, and allowed us to pit
all these pieces against each other. As a result, we ended up developing a
full-fledged game where you can have 2 users go against each other or 2 AI agents
go against each other, or even better,  have a user go against an AI agent trying to
beat it!!



Study / Experiment Setting
We went through several studies and concluded that Minimax and Alpha Beta
pruning would be the best-used AI algorithms for the given deterministic game
problem. We also went through several heuristics that are commonly used to
evaluate the score for a given state of a chess game and found the following as best
suited for the problem at hand:

1. Open Move Score (OMS): Given a player, the number of legal moves possible
for it is known as OMS.

2. Improved OMS: Given a player and its opponent, improved-OMS is
{number of legal moves possible for the player - number of legal moves
possible for its opponent}.

3. Weighted OMS: It is similar to Improved OMS, just with the difference that
here the score is
{legal moves possible for the player - (weight) * number of legal moves
possible for its opponent}

4. Farsighted Score: It takes into account the moves possible by the opponent
after the current player makes any possible move. The score is
{legal moves possible for the player - (weight) * number of legal moves
possible for its opponent after any of the above legal moves is made}

5. Null Score: It returns +∞ if a given player has won, -∞ if lost, else 0.

Demonstration
The entire project codebase is at https://github.com/Soumik-Roy/StaleMate.

Once you have the project folder, open it in the terminal, then install all
dependencies using the following command.

pip install -r requirements.txt
Now to play the game use the command:

python play.py

Below you can see a move by move simulation of a Knight vs Knight game, played
between AI Minimax and Alpha-Beta agents.
Also, a demonstration video of a similar match can be seen at this link.

https://github.com/Soumik-Roy/StaleMate
https://drive.google.com/file/d/1s4whgw_BSRb7UeeBHP8c-kvNPnWU1Tgl/view?usp=share_link


Move 1 Move 2

Move 3 Move 4

Move 5 Move 6

Move 7 Move 8

Move 9 Move 10

Move 11 Move 12

Move 13 Move 14

Move 15 Move 16



Move 17 Move 18

Move 19 Move 20

Move 21 Move 22

Move 23 Move 24

Move 25 Move 26

Move 27 Move 28

Move 29 Move 30

Here are a few more screenshots of the game terminal:



Selection of players 1, 2 and their pieces:

The confirmation of players 1 and 2:

Starting positions:

Mid-game board, showing valid
moves to the human player:



Results



Conclusion and Future Work
We reached the goal that we had initially set for ourselves. After rigorous testing, we
can confirm that the AI indeed does work. As seen from the graphs, the Alpha-Beta
pruning algorithm takes lesser time to run than the Minimax algorithm.
Also, in case you were wondering, the Knight is stronger than the Bishop, in this
particular game.
Our future work will revolve around transforming the architecture to support
multiple players instead of just 2. This will enable us to visualize more complicated
battles between pieces.

References
We referred to the material provided for the course, as well as the following papers:

https://www.ijcai.org/Proceedings/75/Papers/048.pdf

https://www.whitman.edu/documents/Academics/Mathematics/2019/Felstiner-Guich
ard.pdf

https://vision.unipv.it/IA1/ProgrammingaComputerforPlayingChess.pdf

https://arxiv.org/pdf/1208.1940.pdf

https://www.globalvoxinc.com/wp-content/uploads/2021/06/AI_term_paper.pdf

Individual Roles
The initial idea, player distribution and choice of heuristics were discussed and
chalked out collectively.
Soumik implemented the playing agents, Stuti implemented the heuristics and they
worked collectively with Yash to integrate them as a single unit.
Yash also made the online simulation of the game.
The report had equal contributions from everyone.

https://www.ijcai.org/Proceedings/75/Papers/048.pdf
https://www.whitman.edu/documents/Academics/Mathematics/2019/Felstiner-Guichard.pdf
https://www.whitman.edu/documents/Academics/Mathematics/2019/Felstiner-Guichard.pdf
https://vision.unipv.it/IA1/ProgrammingaComputerforPlayingChess.pdf
https://arxiv.org/pdf/1208.1940.pdf
https://www.globalvoxinc.com/wp-content/uploads/2021/06/AI_term_paper.pdf

